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The concentration fields of disperse impurity are calculated on the basis of a 
k-e model of turbulence in a wide range of Stokes numbers. 

Calculating the concentration fields of disperse impurity is one of the most important 
problems in the numerical modeling of two-phase turbulent jets. The character of the impur- 
ity distribution in the jet for the case of solid particles is determined by two basic mech- 
anisms: turbulent diffusion of particles and their migrational transfer, which is due to 
the initial rotation of the particles, acquired in impacts on the tube wall, and the presence 
of phase slipping. One characteristic of the first mechanism is the Schmidt number Sc = 9t/ 
Dp, for which a theoretical dependence was obtained for the first time in [i] within the 
framework of the theory of Prandtl mixing paths. In [2], it was shown that, in taking ac- 
count of the initial particle velocity of the particles incident in a turbulent mole, an ana- 
log of the Schmidt number may be obtained for a two-phase flow, permitting transition in the 
limit to the Schmidt number for a gas with reduction in particle size. However, calculation 
by this model gives an underestimate of the damping rate of the axial concentration distribu- 
tion of the impurity, which has prompted the construction of various approaches determining 
the diffusional properties of a heavy impurity in a turbulent jet [3]. As shown by experiment 
[4], migrational transfer of impurity, causing the phenomena of concentration and dispersion, 
dominates in the initial section of the jet, and may be described by taking account of Magnus 
forces and radial phase slipping [5]. Nevertheless, the calculation scheme for a two-phase 
turbulent jet proposed in [5] is sufficiently cumbersome: calculation of the two-phase jet 
is preceded by solution of the problem of the emission of a one-phase jet, and then the turbu- 
lent transfer coefficients are found, taking account of the influence of particles on the 
theory [2]. Models of second-order turbulence are promising for the calculation of two-phase 
jets. 

In the present work, the distribution of concentration fields of the disperse phase in 
a turbulent jet on the basis of a two-parameter model is investigated numerically, using the 
transfer equations of pulsational energy and the rate of its dissipation. The dynamic phase 
interaction is determined, as in [5], by the drag force and the Magnus force. The system of 
equations for the mean quantities describing the emission of an axisymmetric turbulent gas- 
disperse jet, taking account of phase slipping and particle rotation, takes the form 
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and (6)  a r e  w r i t t e n  in  d i m e n s i o n l e s s  fo rm,  t h e  p r o j e c t i o n  o f  t h e  dimen-  
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It is evident from Eqs. (9) and (i0) that,_with increase in Stokes number, i.e., with 
increase in inertia of the impurity, the terms f, Fpi characterizing the phase interaction in 
Eqs. (3)-(6) decrease. 

The usual relations of the k-s model are used to represent the turbulent frictional 
stress 
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as modified in [6] for the case of an axisymmetric jet by taking account of the mechanism 
of eddy extension using the invariant 
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requires the determination of the transverse turbulent diffusion coefficient. The expres- 
sion for Dp obtained by the method of [7-9], taking account of phase slipping and particle 
rotation, takes the form 
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Note that for very small particles ~yx/yyy + 0, ~ yy + I/TL, so that the expression for 
the turbulent diffusion coefficient of the particles transforms to the well-known expression 
for the transverse diffusion coefficient of the liquid element Dg = <V'2g> TL [7]. 

The correlation of the pulsation velocities of the disperse phase and also the addi- 
tional dissipative terms ep, ~p appearing in the transfer equation for the pulsational 
quantities are found analogously to [8-11], taking account of the phase slipping and par- 
ticle rotation. 

The boundary conditions at the jet axis and in the submerged space take the form 
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The boundary conditions in the initial cross section of the two-phase jet relative to 
ug, k, E are found from the solution of the auxiliary problem of carrying-medium motion in 
the stabilized section of the circular tube in the presence of particles. The disperse- 
phase parameters Up, pp are specified from experiment; vp, Up are selected in the calcula- 
tion process, taking account of estimates [12] from the condition of best agreement with ex- 
perimental data on the distribution of disperse impurity in the jet, analogously to [5]. 

The system in Eqs. (i)-(8), with the corresponding boundary conditions, is solved numeric- 
ally by the finite-difference method, using an implicit six-point scheme of second-order ac- 
curacy [13]. Numerical investigations show [i0] that the two-parameter model here proposed 
allows concentration and dispersion effects of a sufficiently large impurity to be described, 
analogously to [5]. 

The distribution along the jet axis of the maximum ratio mp/mp0 in this flow is shown 
in Fig. 1 for various Stokes numbers. It is evident that, when Stk < i, no account may be 
taken of the influence of particle rotation on their scattering; correspondingly, Eq. (6) 
may be omitted. At the same time, experimental data show [4] that, in the scattering of 
small impurity, the concentration effect is also observed. Using the model of [5], pronounced 
increase in the concentration of small particles at the jet axis cannot be obtained, in view 
of the rapid damping of Up, as follows from Fig. i. In this case, as shown by calculation, 
concentration of the impurity is due to the strong inhomogeneity of the turbulent-energy 
field in the initial section of the jet. 

In Eq. (5), there is a term which may be written in the following form at small Stokes 
numbers : 

Y ~(YPp<Vp ~ > ) ~ ~  ypp k . 
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In [14], it was shown that R causes migrational transfer of input impurity in the direc- 
tion of decrease in intensity of the pulsational-velocity field of the gas. In fact, if R 
is introduced on the right-hand side of Eq. (5), R may be regarded as an additional force 
proportional to (-Sk/Sy). When Stk > 15, it may be assumed that R = 0, since ~yy/~yy + 0; 
impurity scattering close to the end of the tube in this case is determined by migration 
under the action of the Magnus force. 

When Stk < i, not only turbulent diffusion but also migration in the direction of de- 
crease in turbulent energy plays a pronounced role close to the end of the tube. Note that, 
in calculations, this mechanism ensures concentration of the fine impurity, but to a much 
lesser extent than is observed experimentally. 

At intermediate Stokes numbers 1 < Stk < 15, both the migration mechanisms must be taken 
into account. Comparison of the experimental data of [4] and the profiles of impurity flow 
rate calculated taking account of the two migration mechanisms at Stk = 4.6 is shown in Fig. 
2. 

In the remote region of the jet, where migrational transfer is small, the scattering 
of disperse impurity is determined primarily by the turbulent diffusion. In Fig. 3, experi- 
mental data on the scattering Of disperse phase along the jet axis [3] are shown, together 
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Fig. i. Damping of the angular velocity of impurity rotation along the jet axis 
when <0 = 0.5: i) Stk = i; 2) 4; 3) 13; 4) 35; 5) 80. 

Fig. 2. Profile of impurity flow rate <0 = 0.47, Stk = 4.6 in cross sections 
x/r0 = 0 (i), 2.86 (2), 11.43 (3), 17.14 (4). 

Fig. 3. Change in the distributed density of the disperse impurity along the 
jet axis: i) K 0 = 0.46, Stk = 0.8; 2) 0.56, 18. Calculation: curves with 
c 2 = i; dashed curve with c 2 = 0.5. 

FABLE i. Average Schmidt Numbers over the 

Jet Cross Section at Stk = 105, <0 = 0.3 

x~ ro 

35 
40 
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2,33 
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2,20 
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2,98 
3,14 
3,27 
3,39 
3,52 

sos 

2,50 
2,57 
2,64 
2,72 
2,98 

with results of numerical calculation. For small impurity Stk = 0.8, good agreement with 
experimental data is observed; larger impurity Stk = 18 is scattered much more rapidly in 
the experiment than in calculations. 

In [7, i0], the turbulent-diffusion coefficient of the particles is obtained on the basis 
of approximation of the space-time correlation of the velocity of the medium along the par- 
ticle trajectory using the dependence 

Rx~ ('~) ---- exp (--  a'~) Re (lu~ - -  u , l* ) ,  (17) 

V-2/3k + 0,5 [u~ u~l 2 kAe - -  As  = clka!'2/e. ( 1 8 )  
Dp == --~ (V~3[~ + lug - -  up[)2 ' 
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The value of the empirical constant cl = 0.17 is chosen by comparison of the results 
of calculation with experimental data on the scattering of low-inertia impurity Stk < i in 
the remote region of the jet, where the influence of migrational effects may be neglected. 

Calculations using Eqs. (14) and (17) give underestimates in comparison with experimental 
values of the axial impurity concentration in the remote region of the jet for sufficiently 
inertial particles (in Fig. 3, Stk = 18). This indicates an overestimated influence of the 
mean phase slipping on the turbulent-diffusion coefficient of the particles. In fact, with 
increase in Stk, there is an increase in mean phase slipping; as is evident from Eq. (18), 
Dp decreases here. The decrease in Dp with increase in lug - upl is described qualitative- 
ly correctly by Eq. (18), but the rate of decrease in Dp should not be so rapid. 

It may be assumed that the dependence of Rxx(~) on lug - Upl is more complex than ac- 
cording to Eq. (17). In the first approximation, suppose that 

R ~  ('~) -- exp (-- a" 0 Re (c2 ]u,, -- u~[ "~). ( 19 ) 

Then the turbulent diffusion coefficient of the particles may be written in the form 

Dp = 2 --k5/2 c~ ]f2-~+O.Sc, , .V~ + ~2~yx__ (u'ev'e> . ( 2 0 )  
3 ~ (1/2/3k + czVr)~ ?vv~xu 

Experimental data on the scattering of inertial impurity [3, 5] with the new empirical 
constant c 2 = 0.5 are in satisfactory agreement with the calculation results. In Fig. 3, the 
dashed curve shows this calculation for Stk = 18. Note that, in the scattering of inertial 
impurity Stk > i0 at large distances from the end of the tube, the Magnus force exerts an 
influence; the measurements in the jets of [3-5], however, were made at distances no greater 
than x/r~ = 60. In connection with this, the empirical constant c2 must be refined on the 
basis of measurements in the remote region of two-phase jets. 

In [1-3], the Schmidt number was taken as the basic characteristic in determining the 
turbulent diffusion coefficient of the particles. In the present case, it may be calculated 
using Eqs. (ii) and (20): Sc = ~t/Dp. The mean Schmidt number over the jet cross section 
may be determined as follows: 

2 L 
f y S c d y .  (21 )  Sc~ L2 b 

The values of Sc ~ calculated in this way for various Stokes numbers are in good agreement 
with the experimental ratio [15]: ~ = yu/yK. 

Table 1 gives values of ~ and mean values of the Schmidt number for various jet cross 
o 

sections: Sc ~ calculated using Eq. (19); Sc.;~, calculated using Eq. (17); Scp, from the theory 
of [2]. The result of the calculation with the additional empirical constant c2 is in good 
agreement with the experimental data; all the quantities behave qualitatively in an analogous 
manner. 

It is of interest to compare the results of calculating the turbulent-diffusion coefficient 
according to the method proposed here and according to the theory of [i, 2]. In the present 
model and in [I, 2], the influence of particles on the pulsational characteristics is taken 
into account differently. To eliminate the influence of this factor, concentrating attention 
on the turbulent diffusion coefficient of the particles, the impurity concentration is assumed 
to be very small. Then the formula of [2] for the Schmidt number may be simplified: 

Scv/Scg = 21(2- -  n - -  no). ( 2 2 )  

The quantity characterizing the potential for particle entrainment as pp * 0 is deter- 
mined from the equation 

--- f �9 ln]n/nol =- - -  2A/12- -n  nol, A ~:-: [~ u/vg o, ( 2 3 )  

where the dimensionless parameter A, in contrast to the Stokes number, is a local ratio of 
the turbulent time scale and the particle relaxation time ~-i The initial value is found 
from the formula of [2] as pp + 0: 

1 [ i - - e x p ( - - A 1 , ) +  1 ...... exp(1 ..... A,,) ] 
t z  o , Ah ~:-= 0, 1 A. 

e--  2 Ah 1 - -  Ah 
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Fig. 4. Variation in Schmidt number when 
Vr = 0: by the method of [7] (i) and ac- 
cordin~ to Eq. (22) (4); and when Vr = 
0.3: withc 2=0.5 (2), 1 (3), and accord- 
ing to the theory of [2, 16](5). 

The results of calculating the ratio of the Schmidt numbers of the particles and the 
gas Scp/Scg = Dg/Dp as a function of A, i.e., the relative inertia of the particles, are 
shown in Fig. 4. It is evident that all the curves give the same qualitative description 
of the change in Schmidt number of the disperse phase; with decrease in inertia of the par- 
ticles (increase in A), Scp + Scg, which is equivalent to Dp § Dg. All the models predict 
a decrease in turbulent diffusion coefficient of the particles on taking account of the mean 
phase slipping. The introduction of the empirical constant c 2 in the present model allows 
the slowing in decrease in Dp with increase in mean phase slippage which was seen earlier in 
experimental data to be included in the theoretical results. 

Thus, the two-parameter model of a gas-disperse turbulent jet proposed here allows the 
basic mechanisms of concentration-field formation of the disperse impurity to be described 
in the Stokes-number range 0.5 < Stk < i00. 

NOTATION 

x, y, coordinates; u, v, mean velocity components along the x and y axes; u', v', pulsa- 
tional velocity components; F, phase-interaction force; ~, particle diameter; Vr, modulus of 
the difference in mean phase velocities; ~, ~t, kinematic molecular and turbulent viscos- 
ity; k, E, kinetic energy of turbulent pulsations and rate of its dissipation; r0, tube radi- 
us; g-l, particle relaxation time; p0, p, true and distributed density; gp,r additional 
dissipative terms; Pk, generation of turbulent energy; D, turbulent diffusion coefficient; 
Rxx, space-time correlation of the gas velocities along the particle trajectories; RE, Euler 
spatial correlation; TL, TE, AE, Lagrangian time scale, Euler time scale, and spatial scale 
of turbulence; 7u, mixing path with respect to gas velocity, a, ~ij, exponential indices; 
t, ~, time; g = ppup/pgUg, specific flow rate of particles; K0, ratio of particle flow rate 
to gas flow rate at the end of the tube; X, invariant; L, jet radius; Yu, Y~, ordinates of 
jet at which half the axial gas velocity and particle concentration is reached; n = (V'g - 
V'p)/V'g0, V'go, initial gas velocity in mole; A, dimensionless quantity characterizing the 
inertia of a particle; Rep = ~Vr/v, Reynolds number; Sc = vt/Dp, Schmidt number; Stk = 
p~2Ugz/(36~p~r0), Stokes number; Up, angular velocity of particle rotation; ~, relative 
angular velocity; cp, Ok, or cgz, cg2, cE~, cz, c2, empirical constants; X =_0.75p~176 
~ij, ~, ~0, bz bl, b2, coefficients. Dimensionless quantities: Vr = Vrugz; ~ = 2r0N/Ugz; 
pp = pp/p0g; f = 4r~f/(p0gu2gz) ; Fpi = 2r0Fpi/(p~ momentof phase interaction; Ugz, 
gas velocity at the tube axis at end of tube. Indices: g, p, parameters of gas and disperse 
phase; m, at the jet axis; 0, at the end of the tube; z, at the tube axis at the end of the 
tube. 
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EFFICIENCY OF ACCELERATING TUBES OF JET GRINDING MILLS 

M. A. Gol'dshtik and O. A. Likhachev UDC 621.926.8 

An analysis is made of the energy efficiency of accelerating tubes in counter- 
flow jet grinding mills. The dependence of the efficiency of these tubes on 
the parameters of the two-phase flow is established. 

The grinding of solid materials is one of the most energy-intensive processes in industry. 
This fact makes it particularly important to select the proper method of grinding for a given 
case. Thus, analysis of the energy efficiency of grinding mills is of definite interest with 
regard to improving grinding technology and mill design. One promising trend in grinding 
is the use of jet mills [i, 2], in which the material is ground by high-speed impact. Gas 
or steam is usually used as the working substance, the energy of the gas or steam accelerat- 
ing the starting material to velocities at which it breaks up upon impact against an obstacle 
(the wall of the mill or another portion of the material being ground). Here, the energy 
of the working substance is spent on the completion of useful work in accelerating particles 
of the material being ground, as well as on irreversible losses connected with the evolution 
of heat in interphase friction. Both types of energy expenditures depend on the phase slip 
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